Extensions 1→N→G→Q→1 with N=C22 and Q=S3×A4

Direct product G=N×Q with N=C22 and Q=S3×A4
dρLabelID
C22×S3×A436C2^2xS3xA4288,1037

Semidirect products G=N:Q with N=C22 and Q=S3×A4
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×A4) = A4×S4φ: S3×A4/A4S3 ⊆ Aut C22169+C2^2:(S3xA4)288,1024
C222(S3×A4) = S3×C22⋊A4φ: S3×A4/C22×S3C3 ⊆ Aut C2236C2^2:2(S3xA4)288,1038
C223(S3×A4) = A4×C3⋊D4φ: S3×A4/C3×A4C2 ⊆ Aut C22366C2^2:3(S3xA4)288,928

Non-split extensions G=N.Q with N=C22 and Q=S3×A4
extensionφ:Q→Aut NdρLabelID
C22.1(S3×A4) = (C4×C12)⋊C6φ: S3×A4/C22×S3C3 ⊆ Aut C22366+C2^2.1(S3xA4)288,405
C22.2(S3×A4) = C42⋊C3⋊S3φ: S3×A4/C22×S3C3 ⊆ Aut C22486C2^2.2(S3xA4)288,406
C22.3(S3×A4) = S3×C42⋊C3φ: S3×A4/C22×S3C3 ⊆ Aut C22366C2^2.3(S3xA4)288,407
C22.4(S3×A4) = (C22×S3)⋊A4φ: S3×A4/C22×S3C3 ⊆ Aut C22246C2^2.4(S3xA4)288,411
C22.5(S3×A4) = SL2(𝔽3).11D6φ: S3×A4/C3×A4C2 ⊆ Aut C22484C2^2.5(S3xA4)288,923
C22.6(S3×A4) = Dic3×SL2(𝔽3)central extension (φ=1)96C2^2.6(S3xA4)288,409
C22.7(S3×A4) = C2×Dic3.A4central extension (φ=1)96C2^2.7(S3xA4)288,921
C22.8(S3×A4) = C2×S3×SL2(𝔽3)central extension (φ=1)48C2^2.8(S3xA4)288,922
C22.9(S3×A4) = C2×Dic3×A4central extension (φ=1)72C2^2.9(S3xA4)288,927

׿
×
𝔽